63 research outputs found

    Performance of the AMS-02 Transition Radiation Detector

    Get PDF
    For cosmic particle spectroscopy on the International Space Station the AMS experiment will be equipped with a Transition Radiation Detector (TRD) to improve particle identification. The TRD has 20 layers of fleece radiator with Xe/CO2 proportional mode straw tube chambers. They are supported in a conically shaped octagon structure made of CFC-Al-honeycomb. For low power consumption VA analog multiplexers are used as front-end readout. A 20 layer prototype built from final design components has achieved proton rejections from 100 to 2000 at 90% electron efficiency for proton beam energies up to 250 GeV with cluster counting, likelihood and neural net selection algorithms.Comment: 11 pages, 25 figures, espcrc2.sty (elsevier 2-column

    Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station

    Get PDF
    Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B/C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variation with rigidity of the B/C spectral index is reported for the first time. The B/C ratio does not show any significant structures in contrast to many cosmic ray models that require such structures at high rigidities. Remarkably, above 65 GV, the B/C ratio is well described by a single power law R[superscript Δ] with index Δ=-0.333±0.014(fit)±0.005(syst), in good agreement with the Kolmogorov theory of turbulence which predicts Δ=-1/3 asymptotically.National Science Foundation (U.S.) (Grants 1455202 and 1551980)Wyle Research (Firm) (Grant 2014/T72497)United States. National Aeronautics and Space Administration (NASA Earth and Space Science Fellowship Grant HELIO15F-0005

    Properties of Neon, Magnesium, and Silicon Primary Cosmic Rays Results from the Alpha Magnetic Spectrometer

    Get PDF
    We report the observation of new properties of primary cosmic rays, neon (Ne), magnesium (Mg), and silicon (Si), measured in the rigidity range 2.15 GV to 3.0 TV with 1.8 × 106^{6} Ne, 2.2 × 106^{6} Mg, and 1.6 × 106^{6} Si nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. The Ne and Mg spectra have identical rigidity dependence above 3.65 GV. The three spectra have identical rigidity dependence above 86.5 GV, deviate from a single power law above 200 GV, and harden in an identical way. Unexpectedly, above 86.5 GV the rigidity dependence of primary cosmic rays Ne, Mg, and Si spectra is different from the rigidity dependence of primary cosmic rays He, C, and O. This shows that the Ne, Mg, and Si and He, C, and O are two different classes of primary cosmic rays

    Properties of Iron Primary Cosmic Rays: Results from the Alpha Magnetic Spectrometer

    Get PDF
    We report the observation of new properties of primary iron (Fe) cosmic rays in the rigidity range 2.65 GV to 3.0 TV with 0.62 million iron nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. Above 80.5 GV the rigidity dependence of the cosmic ray Fe flux is identical to the rigidity dependence of the primary cosmic ray He, C, and O fluxes, with the Fe/O flux ratio being constant at 0.155±0.006. This shows that unexpectedly Fe and He, C, and O belong to the same class of primary cosmic rays which is different from the primary cosmic rays Ne, Mg, and Si class

    Towards Understanding the Origin of Cosmic-Ray Positrons

    Get PDF
    Precision measurements of cosmic ray positrons are presented up to 1 TeV based on 1.9 million positrons collected by the Alpha Magnetic Spectrometer on the International Space Station. The positron flux exhibits complex energy dependence. Its distinctive properties are (a) a significant excess starting from 25.2 +/- 1.8 GeV compared to the lower-energy, power-law trend, (b) a sharp dropoff above 284(-64)(+91) GeV, (c) in the entire energy range the positron flux is well described by the sum of a term associated with the positrons produced in the collision of cosmic rays, which dominates at low energies, and a new source term of positrons, which dominates at high energies, and (d) a finite energy cutoff of the source term of E-s = 810(-180)(+310) GeV is established with a significance of more than 4 sigma. These experimental data on cosmic ray positrons show that, at high energies, they predominantly originate either from dark matter annihilation or from other astrophysical sources

    Properties of Neon, Magnesium, and Silicon Primary Cosmic Rays Results from the Alpha Magnetic Spectrometer

    Get PDF
    We report the observation of new properties of primary cosmic rays, neon (Ne), magnesium (Mg), and silicon (Si), measured in the rigidity range 2.15 GV to 3.0 TV with 1.8 x 10(6) Ne, 2.2 x 10(6) Mg, and 1.6 x 10(6) Si nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. The Ne and Mg spectra have identical rigidity dependence above 3.65 GV. The three spectra have identical rigidity dependence above 86.5 GV, deviate from a single power law above 200 GV, and harden in an identical way. Unexpectedly, above 86.5 GV the rigidity dependence of primary cosmic rays Ne, Mg, and Si spectra is different from the rigidity dependence of primary cosmic rays He, C, and O. This shows that the Ne, Mg, and Si and He, C, and O are two different classes of primary cosmic rays

    Properties of Cosmic Helium Isotopes Measured by the Alpha Magnetic Spectrometer

    Get PDF
    Precision measurements by the Alpha Magnetic Spectrometer (AMS) on the International Space Station of He-3 and He-4 fluxes are presented. The measurements are based on 100 million He-4 nuclei in the rigidity range from 2.1 to 21 GV and 18 million He-3 from 1.9 to 15 GV collected from May 2011 to November 2017. We observed that the He-3 and He-4 fluxes exhibit nearly identical variations with time. The relative magnitude of the variations decreases with increasing rigidity. The rigidity dependence of the He-3/He-4 flux ratio is measured for the first time. Below 4 GV, the He-3/He-4 flux ratio was found to have a significant long-term time dependence. Above 4 GV, the He-3/He-4 flux ratio was found to be time independent, and its rigidity dependence is well described by a single power law proportional to R-Delta with Delta = 0.294 0.004. Unexpectedly, this value is in agreement with the B/O and B/C spectral indices at high energies

    Towards Understanding the Origin of Cosmic-Ray Electrons

    Get PDF
    Precision results on cosmic-ray electrons are presented in the energy range from 0.5 GeV to 1.4 TeV based on 28.1 x 10(6) electrons collected by the Alpha Magnetic Spectrometer on the International Space Station. In the entire energy range the electron and positron spectra have distinctly different magnitudes and energy dependences. The electron flux exhibits a significant excess starting from 42.1(-5.2)(+5.4) GeV compared to the lower energy trends, but the nature of this excess is different from the positron flux excess above 25.2 +/- 1.8 GeV. Contrary to the positron flux, which has an exponential energy cutoff of 810(-180)(+310) GeV, at the 5 sigma level the electron flux does not have an energy cutoff below 1.9 TeV. In the entire energy range the electron flux is well described by the sum of two power law components. The different behavior of the cosmic-ray electrons and positrons measured by the Alpha Magnetic Spectrometer is clear evidence that most high energy electrons originate from different sources than high energy positrons

    Precision Measurement of Cosmic-Ray Nitrogen and its Primary and Secondary Components with the Alpha Magnetic Spectrometer on the International Space Station

    Get PDF
    A precision measurement of the nitrogen flux with rigidity (momentum per unit charge) from 2.2 GV to 3.3 TV based on 2.2 x 10(6) events is presented. The detailed rigidity dependence of the nitrogen flux spectral index is presented for the first time. The spectral index rapidly hardens at high rigidities and becomes identical to the spectral indices of primary He, C, and O cosmic rays above similar to 700 GV. We observed that the nitrogen flux Phi(N) can be presented as the sum of its primary component Phi(P)(N) and secondary component Phi(S)(N), Phi(N) = Phi(P)(N) + Phi(S)(N), and we found Phi(N) is well described by the weighted sum of the oxygen flux Phi(O) (primary cosmic rays) and the boron flux Phi(B) (secondary cosmic rays), with Phi(P)(N) = (0.090 +/- 0.002) x Phi(O) and Phi(S)(N) = (0.62 +/- 0.02) x Phi(B) over the entire rigidity range. This corresponds to a change of the contribution of the secondary cosmic ray component in the nitrogen flux from 70% at a few GV to < 30% above 1 TV

    Properties of Iron Primary Cosmic Rays: Results from the Alpha Magnetic Spectrometer

    Get PDF
    We report the observation of new properties of primary iron (Fe) cosmic rays in the rigidity range 2.65 GV to 3.0 TV with 0.62 x 10(6) iron nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. Above 80.5 GV the rigidity dependence of the cosmic ray Fe flux is identical to the rigidity dependence of the primary cosmic ray He, C, and O fluxes, with the Fe/O flux ratio being constant at 0.155 +/- 0.006. This shows that unexpectedly Fe and He, C, and O belong to the same class of primary cosmic rays which is different from the primary cosmic rays Ne, Mg, and Si class
    • …
    corecore